基于视频的人重新识别(REID)旨在识别多个非重叠摄像机的给定的行人视频序列。为了汇总视频样本的时间和空间特征,引入了图神经网络(GNN)。但是,现有的基于图的模型(例如STGCN)在节点功能上执行\ textIt {mean}/\ textit {max boming}以获取图表表示,该图表忽略了图形拓扑和节点的重要性。在本文中,我们建议图形池网络(GPNET)学习视频检索的多粒度图表示,其中实现了\ textit {Graph boming layer},以简化图形。我们首先构建了一个多粒图,其节点特征表示由骨架学到的图像嵌入,并且在颞和欧几里得邻域节点之间建立了边缘。然后,我们实现多个图形卷积层以在图上执行邻域聚集。为了下图,我们提出了一个多头全注意图池(MHFAPOOL)层,该图集合了现有节点群集和节点选择池的优势。具体而言,MHFAPOOL将全部注意矩阵的主要特征向量作为聚合系数涉及每个汇总节点中的全局图信息。广泛的实验表明,我们的GPNET在四个广泛使用的数据集(即火星,dukemtmc-veneoreid,ilids-vid and Prid-2011)上实现了竞争结果。
translated by 谷歌翻译
现有的基于视频的人重新识别(REID)的方法主要通过功能提取器和功能聚合器来了解给定行人的外观特征。但是,当不同的行人外观相似时,外观模型将失败。考虑到不同的行人具有不同的步行姿势和身体比例,我们建议学习视频检索的外观功能之外的歧视性姿势功能。具体而言,我们实现了一个两分支的体系结构,以单独学习外观功能和姿势功能,然后将它们串联在一起进行推理。为了学习姿势特征,我们首先通过现成的姿势检测器检测到每个框架中的行人姿势,并使用姿势序列构建时间图。然后,我们利用复发图卷积网络(RGCN)来学习时间姿势图的节点嵌入,该姿势图设计了一种全局信息传播机制,以同时实现框内节点的邻域聚集,并在框架间图之间传递消息。最后,我们提出了一种由节点注意和时间注意的双重意见方法,以从节点嵌入中获得时间图表示,其中采用自我注意机制来了解每个节点和每个帧的重要性。我们在三个基于视频的REID数据集(即火星,Dukemtmc和Ilids-Vid)上验证了所提出的方法,其实验结果表明,学习的姿势功能可以有效地改善现有外观模型的性能。
translated by 谷歌翻译
基于模型的步态识别方法通常采用行人步行姿势来识别人类。但是,由于摄像头视图的改变,现有方法并未明确解决人类姿势的较大阶层差异。在本文中,我们建议通过通过低UPPER生成的对抗网络(Lugan)学习全级转换矩阵来为每个单视姿势样本生成多视图姿势序列。通过摄像机成像的先验,我们得出的是,跨视图之间的空间坐标满足了全级矩阵的线性转换,因此,本文采用了对抗性训练来从源姿势学习转换矩阵,并获得目标视图以获得目标。目标姿势序列。为此,我们实现了由图形卷积(GCN)层组成的发电机,完全连接(FC)层和两支分支卷积(CNN)层:GCN层和FC层编码源姿势序列和目标视图,然后是CNN分支最后,分别学习一个三角形基质和上三角基质,最后它们被乘以制定全级转换矩阵。出于对抗训练的目的,我们进一步设计了一个条件鉴别因子,该条件区分姿势序列是真实的还是产生的。为了启用高级相关性学习,我们提出了一个名为Multi尺度超图卷积(HGC)的插件播放模块,以替换基线中的空间图卷积层,该层可以同时模拟联合级别的部分,部分部分 - 水平和身体水平的相关性。在两个大型步态识别数据集(即CASIA-B和OUMVLP置位)上进行的广泛实验表明,我们的方法的表现优于基线模型,并以一个较大的边距基于基于姿势的方法。
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译
Pure transformers have shown great potential for vision tasks recently. However, their accuracy in small or medium datasets is not satisfactory. Although some existing methods introduce a CNN as a teacher to guide the training process by distillation, the gap between teacher and student networks would lead to sub-optimal performance. In this work, we propose a new One-shot Vision transformer search framework with Online distillation, namely OVO. OVO samples sub-nets for both teacher and student networks for better distillation results. Benefiting from the online distillation, thousands of subnets in the supernet are well-trained without extra finetuning or retraining. In experiments, OVO-Ti achieves 73.32% top-1 accuracy on ImageNet and 75.2% on CIFAR-100, respectively.
translated by 谷歌翻译